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Abstract: In a connected graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)), a dominating set 𝐷 ⊆ 𝑉(𝐺) is a weakly connected 𝑘-fair dominating set (𝑘𝑤𝑓𝑑-set) in G if the weakly 

induced subgraph of D is connected and |𝑁𝐺(𝑢) ∩ 𝐷| = 𝑘 for every 𝑢 ∈ 𝑉(𝐺) ∖ 𝐷 for some integer 𝑘 ≥ 1. The weakly connected 𝑘-fair domination number 
of G, denoted by 𝛾𝑘𝑤𝑓𝑑(𝐺) is the minimum cardinality of a weakly connected 𝑘- fair dominating set. In this paper, we study the weakly connected 𝑘- fair 

domination numbers of some families of graphs such as the complete graphs (𝐾𝑛), paths (𝑃𝑛) ,  cycles (𝐶𝑛), helm graphs (𝐻𝑛)  and complete bipartite 

graphs (𝐾𝑚,𝑛). We also characterize the weakly connected 𝑘- fair dominating sets in join 𝐾1 + 𝐻, and the vertex corona 𝐺 ∘ 𝐻. Moreover, sufficient conditions 

for weakly connected 𝑘-fair dominating sets of edge corona 𝐺 ⋄ 𝐻 of graphs are obtained. 
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1 INTRODUCTION 

 

In graph theory, one of the most extensively researched 

topics is the domination in graphs. For an in-depth 

understanding of domination concepts, valuable references 

include the works of Haynes et al. [9] and [10]. Let 𝐺 =

(𝑉(𝐺), 𝐸(𝐺)) be an undirected connected graph. The set of 

neighbors of a vertex 𝑢 ∈ 𝑉(𝐺) is called the open 

neighborhood of 𝑢 and is denoted by 𝑁𝐺(𝑢) and the closed 

neighborhood of 𝑢 is the set 𝑁𝐺[𝑢] = 𝑁𝐺(𝑢) ∪ {𝑢}. The open 

neighborhood of 𝑈 ⊆ 𝑉(𝐺) is 𝑁𝐺(𝑈) = ⋃ 𝑁𝐺(𝑢)𝑢∈𝑈  and the 

closed neighborhood of 𝑈 is 𝑁𝐺[𝑈] = 𝑁𝐺(𝑈) ∪ 𝑈. A set 𝐷 ⊆

𝑉(𝐺)  is a dominating set of G if for every 𝑢 ∈ 𝑉(𝐺) ∖ 𝐷, there 

exists 𝑣 ∈ 𝐷 such that  𝑢𝑣 ∈ 𝐸(𝐺). The domination number of 

G, denoted by 𝛾(𝐺), is the smallest cardinality of a 

dominating set of G. 

 

A subset 𝐷 of 𝑉(𝐺) is called weakly connected if the 

subgraph 〈D〉𝑤 = (𝑁𝐺[𝐷], 𝐸𝑤)  weakly induced by 𝐷 is 

connected, where 𝐸𝑤 consists of edges in 𝐺 with at least one 

vertex in 𝐷.  A dominating set 𝐷 ⊆ 𝑉(𝐺) is a weakly 

connected dominating set of G if the subgraph, 〈D〉𝑤, weakly 

induced by D is connected. The weakly connected 

domination number of G, denoted by 𝛾𝑤(𝐺), is the smallest 

cardinality of a weakly connected dominating set of G.  The 

concept of weakly connected domination was introduced by 

Grossman [7] and was studied by Dunbar, et al. [2] where 

sharp upper and lower bounds for 𝛾𝑤(𝐺) were obtained.  

Additional investigations on weakly connected domination 

surfaced in the literature [11,14,15,16]. 

 

A noteworthy variation, fair domination, emerged in 

2012 through the contributions of Caro, Hansberg, and 

Henning [1]. Subsequent research delved into fair 

domination, as evidenced by studies in [3,4,5,6,8,17]. 

Maravilla et al. [12] and [13] extended this notion in 2014, 

introducing 𝑘-fair domination and characterizing 𝑘-fair 

dominating sets across various graph operations such as join, 

corona, composition, and cartesian product. Building upon 

these advancements, Usman et al. [18,19,20] explored 

connected 𝑘-fair domination and neighborhood connected 

𝑘-fair domination in 2018 and 2019, respectively. 

 

A dominating set 𝐷 ⊆ 𝑉(𝐺) is a fair dominating set 

(𝑓𝑑-set) in G if for every two distinct vertices 𝑢 and 𝑣  from 

𝑉(𝐺) ∖ 𝐷, |𝑁𝐺(𝑢) ∩ 𝐷| = |𝑁𝐺(𝑣) ∩ 𝐷|. The fair domination 

number of G, denoted by 𝛾𝑓𝑑(𝐺), is the minimum cardinality 

of an 𝑓𝑑-set. A fair dominating set of cardinality 𝛾𝑓𝑑(𝐺) is 

called a minimum fair dominating set or a 𝛾𝑓𝑑(𝐺)-set. A 

dominating set 𝐷 ⊆ 𝑉(𝐺) is a 𝑘- fair dominating set if 

|𝑁𝐺(𝑢) ∩ 𝐷| = 𝑘 for every  𝑢 ∈ 𝑉(𝐺) ∖ 𝐷 for some integer 𝑘 ≥

1. The 𝑘-fair domination number of G, denoted 𝛾𝑘𝑓𝑑(𝐺) is the 

minimum cardinality of a 𝑘 -fair dominating set, abbreviated 

𝑘fd-set. A 𝑘-fair dominating set of cardinality 𝛾𝑘𝑓𝑑(𝐺) is 

called  𝛾𝑘𝑓𝑑 – set of G. The weakly connected 𝑘- fair 

domination is another variant of domination where it 

combines the concepts of domination and the idea of 

weakening the conditions of connectivity of vertices in a set.  

 

A dominating set 𝐷 ⊆ 𝑉(𝐺) is a weakly connected 𝑘 

-fair dominating set in G, abbreviated 𝑘wfd – set, if the 

subgraph 〈D〉𝑤 = (𝑁𝐺[𝐷], 𝐸𝑤) is connected and |𝑁𝐺(𝑢) ∩ 𝐷| =

𝑘 for every 𝑢 ∈ 𝑉(𝐺) ∖ 𝐷 for some integer 𝑘 ≥ 1. The weakly 

connected 𝑘-fair domination number of G, denoted by 

𝛾𝑘𝑤𝑓𝑑(𝐺) is the minimum cardinality of a weakly connected 

𝑘- fair dominating set. The weakly connected fair domination 

number of G denoted by 𝛾𝑤𝑓𝑑(𝐺) is defined as 𝛾𝑤𝑓𝑑(𝐺) = 

min{𝛾𝑘𝑤𝑓𝑑(𝐺)}, where the minimum is taken over all integers 

k with 1 ≤ 𝑘 ≤ 𝑛 − 1.  A weakly connected 𝑘- fair dominating 

set of cardinality  𝛾𝑘𝑤𝑓𝑑(𝐺) is called 𝛾𝑘𝑤𝑓𝑑(𝐺)-set of G. 

 

In this paper, we introduce and investigate the 

concept of weakly connected 𝑘- fair domination, where 𝑘 is 

a positive integer. The formula for the weakly connected 𝑘- 

fair domination numbers of some families of graphs such as 

the complete graphs 𝐾𝑛, paths 𝑃𝑛 ,  cycles 𝐶𝑛, helm graphs 𝐻𝑛  

and complete bipartite graphs 𝐾𝑚,𝑛 are provided. The 
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necessary and sufficient conditions for the weakly connected 

fair domination number of a graph is exactly equal to 2 is 

given. We characterize the weakly connected fair dominating 

sets in join 𝐾1 + 𝐻, and the vertex corona 𝐺 ∘ 𝐻, where G is 

any connected graph and H is any graph. The sufficient 

conditions for the weakly connected 𝑘-fair dominating sets 

of the edge corona 𝐺 ⋄ 𝐻, where G is any connected graph 

and H is any graph are obtained. 

 

The vertex set 𝑉(𝐺) of a connected graph G is itself 

an 𝑤𝑓𝑑- set.  A weakly connected fair dominating set (𝑤𝑓𝑑- 

set) in G is an 𝑟𝑤𝑓𝑑-set for some integer 𝑟 ≥ 1.  

 

The disjoint union of X and Y, denoted by 𝑋 ∪̇ 𝑌̇  (the 

symbol ∪̇ denotes the disjoin union) is the set obtained by 

taking the union of X and Y treating each element in X as 

distinct from each element in Y. The join of two graphs G and 

H, denoted by 𝐺 + 𝐻, is the graph with vertex set 𝑉(𝐺 + 𝐻) =

𝑉(𝐺) ∪̇ 𝑉(𝐻) and edge set 𝐸(𝐺 + 𝐻) =

𝐸(𝐺) ∪̇ 𝐸(𝐻) ∪̇ {𝑢𝑣: 𝑢 ∈ 𝑉(𝐺), 𝑣 ∈ 𝑉(𝐻)}. 

 

Remark 1.1 Let 𝐺 and 𝐻 be connected graphs. If 𝑆 ⊆ 𝑉(𝐺 +

𝐻) is nonempty, then 〈S〉𝑤 is connected. 

 

2 MAIN RESULTS 

 

Remark 2.1 Let G be any nontrivial connected graph. Then 

1 ≤ 𝛾(𝐺) ≤ 𝛾𝑓𝑑(𝐺) ≤ 𝛾𝑤𝑓𝑑(𝐺) ≤ 𝛾𝑘𝑤𝑓𝑑(𝐺) for some integer 

𝑘 ≥ 1 . 

 

Theorem 2.2 For any nontrivial connected graph of order 

𝑛. Then  𝛾𝑤𝑓𝑑(𝐺) ≤ 𝑛 − 1. 

 

Proof: The case 𝑛 = 2 will mean that 𝐺 = 𝐾2 and hence  

𝛾𝑤𝑓𝑑(𝐺) ≤ 1. Let 𝑛 ≥ 3. Set 𝐷 = 𝑉(𝐺) ∖ {𝑥}, where 𝐷 ∪ {𝑥} =

𝑉(𝐺). Since G is connected, there exists 𝑦 ∈ 𝐷 such that 𝑥𝑦 ∈

𝐸(𝐺). Thus, D is a dominating set. Also, D is a fair dominating 

set in fact |𝑁𝐺(𝑥) ∩ 𝐷| = |𝑁𝐺(𝑥)|. Let 𝑢, 𝑣 ∈ 𝐷. Then 𝑢𝑣 ∈

𝐸(𝐺) or 𝑢𝑣 ∉ 𝐸(𝐺). If 𝑢𝑣 ∈ 𝐸(𝐺), then 〈𝐷〉𝑤 is connected. If 

𝑢𝑣 ∉ 𝐸(𝐺). Then there exists   𝑤 ∈ 𝑉(𝐺) such that 𝑢𝑤, 𝑤𝑣 ∈

𝐸(𝐺).    Thus, there is a 𝑢 − 𝑣 path for every 𝑢, 𝑣 ∈ 𝐷. It follows 

that 〈𝐷〉𝑤 is connected. Hence, D is a 𝑤𝑓𝑑-set in G. Therefore, 

by Remark 2.1,  𝛾𝑤𝑓𝑑(𝐺) ≤ |𝐷| = 𝑛 − 1.   ∎ 

 

Theorem 2.3 Let G be a nontrivial connected regular graph of 

order 𝑛 > 2. Then 𝛾𝑤𝑓𝑑(𝐺) ≤ 𝑛 − 2. 

 

Proof: Let G be a connected graph. Further, let G be an 𝑚-

regular graph. Since 𝑛 ≥ 3, we have 𝑚 ≥ 2. Let D be the 

minimum weakly connected dominating set of G. Then 

𝛾𝑤(𝐺) = |𝐷| ≤ 𝑛 − 2. Choose 𝑢, 𝑣 ∈ 𝑉(𝐺) ∖ 𝐷 and set  𝑆 =

𝑉(𝐺) ∖ {𝑢, 𝑣}. Since 𝐷 ⊆ 𝑆, S is a weakly dominating set of G. 

If 𝑢𝑣 ∈ 𝐸(𝐺), then |𝑁𝐺(𝑢) ∩ 𝑆| = 𝑚 − 1 = |𝑁𝐺(𝑣) ∩ 𝑆|. On the 

other hand, if 𝑢𝑣 ∉ 𝐸(𝐺), then |𝑁𝐺(𝑢) ∩ 𝑆| = 𝑚 = |𝑁𝐺(𝑣) ∩

𝑆|. It follows that S is a fair dominating set in G. Hence, S is a 

𝑤𝑓𝑑-set in G. Consequently, 𝛾𝑤𝑓𝑑(𝐺) ≤ |𝑆| = 𝑛 − 2. ∎ 

 

Theorem 2.4. Let G be any connected graph. Then 𝛾𝑤𝑓𝑑(𝐺) =

1 if and only if 𝛾(𝐺) = 1. 

 

Proof: If 𝐺 is a trivial graph, then 𝛾(𝐺) =  𝛾𝑤𝑓𝑑(𝐺) = |𝑉(𝐺)| =

1. Let  |𝑉(𝐺)| ≥ 2. Suppose that 𝛾𝑤𝑓𝑑 (𝐺) = 1. Then by 

Remark 2.1, 1 ≤ 𝛾(𝐺) ≤ 𝛾𝑤𝑓𝑑(𝐺) = 1 implying that 𝛾(𝐺) = 1. 

Conversely, suppose 𝛾(𝐺) = 1. Let 𝐷 = {𝑥} be a 

minimum dominating set in 𝐺. Then for every 𝑦 ∈ 𝑉(𝐺) ∖ 𝐷,

 𝑁𝐺(𝑦) ∩ 𝐷 = {𝑥}. It follows that for all 𝑦, 𝑧 ∈ 𝑉(𝐺) ∖ 𝐷 with 

𝑦 ≠ 𝑧, we have | 𝑁𝐺(𝑦) ∩ 𝐷 | = |𝐷| = 1 = | 𝑁𝐺(𝑧) ∩ 𝐷|. Thus, 

𝐷 is a 1𝑓𝑑-set of G. Also, the subgraph weakly induced by D 

is isomorphic to the join of 𝐾1 and 𝐻, where 𝐻 is any graph 

with 𝑉(𝐻) = 𝑉(𝐺) ∖ {𝑥}. Thus, 〈𝐷〉𝑤 is connected. It follows 

that 𝐷 is a weakly connected fair dominating set in 𝐺. By 

Remark 2.1, 1 ≤ 𝛾𝑤𝑓𝑑(𝐺) ≤ |𝐷| =  1. Therefore, by Remark 

2.1, 𝛾𝑤𝑓𝑑(𝐺) = 1.  ∎ 

 

     The path  𝑃𝑛 is a graph with distinct vertices 𝑣1, 𝑣2, …  , 𝑣𝑛 

and edges 𝑣1𝑣2, 𝑣2𝑣3, …  , 𝑣𝑛−1𝑣𝑛. The cycle 𝐶𝑛 is a graph with 

distinct vertices 𝑎1, 𝑎2, …  , 𝑎𝑛 and edges 

𝑎1𝑎2, 𝑎2𝑎3, …  , 𝑎𝑛−1𝑎𝑛, 𝑎𝑛𝑎1. The helm 𝐻𝑛 is a graph formed 

from a wheel by attaching a pendant vertex at each of the 

vertices of the 𝑛 − cycle. Figure 1 shows the schematic 

diagrams of path 𝑃𝑛, where 𝑛 ≥ 2,  cycle 𝐶𝑛, and helm 𝐻𝑛  

graphs, 𝑛 ≥ 3. 

 
 

Theorem 2.5.   Let 𝑃𝑛 be a path graph with 𝑛 ≥ 2. Then   

𝛾𝑤𝑓𝑑(𝑃𝑛) = {
⌊

𝑛

2
⌋ ,     𝑖𝑓    𝑛 < 5

⌈
𝑛+1

2
⌉ , 𝑖𝑓  𝑛 ≥ 5

. 

 

Proof: Let  𝑃𝑛 = [𝑣1, 𝑣2, … , 𝑣𝑛 ]. Suppose first 𝑛 < 5. For  𝑛 = 2,  

𝑛 = 3, and  𝑛 = 4  consider the following sets namely,  𝐷1 =

{𝑣1}, 𝐷2 = {𝑣2} and 𝐷3 = {𝑣2, 𝑣3}, respectively. Thus  𝐷1, 𝐷2 

and 𝐷3 are respectively the minimum 𝑤𝑓𝑑-set in 𝑃𝑛. Hence, 

𝛾𝑤𝑓𝑑(𝑃𝑛) = ⌊
𝒏

𝟐
⌋. 

Secondly, suppose 𝑛 ≥ 5. Consider 𝐷4 =

{𝑣1, 𝑣3, … , 𝑣𝑛−2, 𝑣𝑛 } when  𝑛 is odd and 
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 𝐷5 = {𝑣1, 𝑣3, … , 𝑣𝑛−1, 𝑣𝑛 } when  𝑛 is even. Then 〈𝐷4〉𝑤 = 𝑃𝑛  

and 〈𝐷5〉𝑤 = 𝑃𝑛. Thus, 〈𝐷4〉𝑤 and  〈𝐷5〉𝑤  are connected and 2-

fair dominating set. Hence, 𝐷4 is a 𝑤𝑓𝑑-set in 𝑃𝒏  for odd 

integer 𝑛 with |𝐷4 | =
𝑛+1

2
= ⌈

𝑛+1

2
⌉ and 𝐷5 is a 𝑤𝑓𝑑-set in 𝑃𝒏  

for even integer 𝑛 with |𝐷5 | =
𝑛

2
+ 1 = ⌈

𝑛+1

2
⌉. Thus, 𝛾𝑤𝑓𝑑(𝑃𝑛) ≤

⌈
𝑛+1

2
⌉. Next, let 𝐷∗ be a 𝛾𝑤𝑓𝑑-set in 𝑃𝒏. Since 𝐷∗ is fair 

dominating set in 𝑃𝒏,  𝑣1, 𝑣𝑛 ∈ 𝐷∗. Suppose 𝑣𝑘 ∉ 𝐷∗  for some  

𝑘 ∈ {2,3, … , 𝑛 − 1}. Then  𝑣𝑘−1, 𝑣𝑘+1 ∈ 𝐷∗   since denial of any 

of the two eventualities would produce an edge of  𝑃𝒏  which 

is incident to none of the vertices in  𝐷∗, contradicting to the 

fact that   〈𝐷∗〉𝑤 must be connected or must be a fair 

dominating set. In the case when 𝑛 is odd, 𝐷∗ =

{𝑣1, 𝑣3, … , 𝑣𝑛−2, 𝑣𝑛 } where  |𝐷∗ | =
𝑛+1

2
= ⌈

𝑛+1

2
⌉. But if 𝑛 is even, 

the property that each subset of  𝑉(𝑃𝒏) of the form 

{𝑣𝑘−1, 𝑣𝑘+1}, 𝑘 = 2,3, … , 𝑛 − 2, always intersects with 𝐷∗ 

implies that 𝐷∗ contains an element from each of the subsets 

{𝑣2, 𝑣3}, {𝑣4, 𝑣5}, … , {𝑣𝑛−2, 𝑣𝑛−1}. In this case, we have |𝐷∗ | ≥

2 +
𝑛−2

2
=

𝑛

2
+ 1 = ⌈

𝑛+1

2
⌉. From both cases, we have, 

𝛾𝑤𝑓𝑑(𝑃𝑛) ≥ ⌈
𝑛+1

2
⌉. Therefore, 𝛾𝑤𝑓𝑑(𝑃𝑛) = ⌈

𝑛+1

2
⌉. ∎ 

 

Theorem 2.6.   Let 𝐶𝑛 be a cycle graph with 𝑛 ≥ 3. Then   

𝛾𝑤𝑓𝑑 (𝐶𝑛) = ⌈
𝑛

2
⌉. 

 

Proof: Let  𝐶𝑛 = [𝑣1, 𝑣2, … , 𝑣𝑛 , 𝑣1]. Consider 𝐷1 =

{𝑣1, 𝑣3, … , 𝑣𝑛−2, 𝑣𝑛 } when  𝑛 is even and  𝐷2 =

{𝑣1, 𝑣3, … , 𝑣𝑛−1, 𝑣𝑛 } when  𝑛 is odd. Then 〈𝐷1〉𝑤 = 𝐶𝑛  and 

〈𝐷2〉𝑤 = 𝐶𝑛. It follows that 〈𝐷1〉𝑤 and  〈𝐷2〉𝑤  are connected 

and 2-fair dominating set in 𝐶𝑛. Thus, 𝐷1  and 𝐷2 are  𝑤𝑓𝑑-

set in 𝐶𝒏.  Thus, 𝛾𝑤𝑓𝑑(𝐶𝑛) ≤ ⌈
𝑛

2
⌉. Next, let 𝐷∗ be a 𝛾𝑤𝑓𝑑-set in 

𝐶𝑛 . Since 𝐷∗  is dominating set, |𝐷∗| ≥ ⌈
𝑛

2
⌉  for 𝑛 = 3,4. On the 

other hand, for 𝑛 ≥ 5 any weakly connected fair dominating 

set in 𝐶𝑛 is a 2𝑓𝑑-set. It follows that |𝐷∗| ≥ ⌈
𝑛

2
⌉. Hence, 

𝛾𝑤𝑓𝑑(𝐶𝑛) = |𝐷∗| ≥ ⌈
𝑛

2
⌉. Therefore, 𝛾𝑤𝑓𝑑(𝐶𝑛) = ⌈

𝑛

2
⌉. ∎ 

 

Corollary 2.7. Let 𝐻𝑛 be a helm graph. Then 

𝛾𝑤𝑓𝑑(𝐻𝑛 ) = 𝑛 + 1. 

 

Proof: We denote the central vertex of a wheel by 𝑣 and the 

vertices of 𝑛-cycle by 𝑎𝑖 and the leaves of 𝐻𝑛 by 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑛 

(see Figure 1 (c)). Let 𝐷 = {𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣}. Then 〈𝐷〉𝑤 is 

connected as shown in Figure 2(a). Let 𝑎, 𝑏 ∈ 𝑉(𝐻𝑛) ∖ 𝐷. Then 

|𝑁𝐻𝑛
(𝑎) ∩ 𝐷| = 2 = |𝑁𝐻𝑛

(𝑏) ∩ 𝐷| . It follows that D is a fair 

dominating set in 𝐻𝑛. Thus, D is a 𝑤𝑓𝑑-set in 𝐻𝑛. Hence, 

𝛾𝑤𝑓𝑑(𝐻𝑛) ≤ |𝐷| = 𝑛 + 1. Next, let 𝐷′ be a 𝛾𝑤𝑓𝑑-set in 𝐻𝑛. Then 

𝑣 ∈ 𝐷′. Thus, we have either  𝐷1
′ = {𝑎𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣} or 

𝐷2
′ = {𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣} = 𝐷 (see Figure 2(a) and 2(b)).  

Thus, 𝛾𝑤𝑓𝑑(𝐻𝑛) ≥ 𝑛 + 1. This proves the equality. ∎ 

 
 

A nontrivial complete graph 𝐾𝑛 is the graph in which 

every two distinct vertices are adjacent. The star graph 𝐾1,𝑛 is 

a  tree with one internal node and n leaves (but no internal 

nodes and n + 1 leaves when n ≤ 1).  The fan 𝐹1,𝑛 is a graph 

obtained by joining all the vertices of a path 𝑃𝑛 to a further 

vertex v called the center vertex. The wheel 𝑊1,𝑛 is a graph 

obtained by joining all vertices of a cycle to a further vertex 

v called the axial vertex. Figure 3 shows the schematic 

diagrams of complete graph 𝐾𝑛, star graph 𝐾1,𝑛 , fan graph 

𝐹1,𝑛, and wheel graph 𝑊1,𝑛. 

 
 

The next result characterizes the weakly connected 

fair dominating sets in the join 𝐾1 + 𝐻  where 𝐾1 = 〈{𝑣}〉 and 

H is any graph. 

 

Theorem 2.8. Let 𝐾1 = 〈{𝑣}〉 and H be any graph.  Then 𝐷 ⊆

𝑉(𝐾1 + 𝐻)  is a 𝑤𝑓𝑑-set of 𝐾1 + 𝐻 if and only if one of the 

following holds: 

(i) 𝐷 = {𝑣} 

(ii) 𝐷 = {𝑣} ∪ 𝑆, where 𝑆 is a fair dominating set of 

𝐻. 

(iii) 𝐷 ⊆ 𝑉(𝐻) and 𝐷 is a |𝐷| 𝑓𝑑 − set of 𝐻. 

Proof: Suppose that 𝐷 is a 𝑤𝑓𝑑 − set of 𝐾1 + 𝐻. Consider the 

following cases. 

Case 1. Suppose 𝑣 ∈ 𝐷. Then either 𝐷 ∖ {𝑣} =  𝜙 or 𝐷 ∖

{𝑣}  ⊆ 𝑉(𝐻). If 𝐷 ∖ {𝑣} =  𝜙, then 𝐷 = {𝑣}. Suppose 𝑆 =  𝐷 ∖

{𝑣} ⊆ 𝑉(𝐻) and 𝑆 =  𝐷 ∖ {𝑣} is not a fair dominating set in 𝐻. 

Then 𝐷 is not a fair dominating set in 𝐾1 + 𝐻. This contradicts 

part of the assumption that 𝐷 is a 𝑤𝑓𝑑-set of 𝐾1 + 𝐻. This 

proves the necessity of (i) and (ii). 

Case 2. Suppose that 𝑣 ∉ 𝐷. Then 𝐷 ⊆ 𝑉(𝐻). Let 𝑦 ∈ 𝑉(𝐻). 

Then |𝑁𝐾1+𝐻(𝑦) ∩ 𝐷| = |𝐷|.  Thus, 𝐷 is a |𝐷| 𝑓𝑑 − set of 𝐾1 +

𝐻. Since 𝐷 ⊆ 𝑉(𝐻), we have 𝐷 is a |𝐷| 𝑓𝑑-set of 𝐻. 

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Conversely, suppose first that 𝐷 = {𝑣}. Then D is a 

dominating set. Let 𝑥 ∈ 𝑉(𝐻). Then | 𝑁𝐾1+𝐻(𝑥) ∩ 𝐷| = 1 for 

every 𝑥 ∈ 𝐾1 + 𝐻 ∖ 𝐷. The subgraph weakly induced by 𝐷 =

{𝑣} is the join 𝐾1 + 𝐻∗ , where 𝐻∗ is an empty graph with 

𝑉(𝐻∗) = 𝑉(𝐻). Thus, D is a 𝑤𝑓𝑑-set in 𝐾1 + 𝐻. Next, suppose 

that 𝐷 = {𝑣} ∪ 𝑆, where 𝑆 =  𝐷 ∖ {𝑣} ⊆ 𝑉(𝐻) is a fair 

dominating set in 𝐻. Then 𝐷 is a dominating set in 𝐾1 + 𝐻  

since 𝑆 ⊆ 𝐷. Let 𝑎, 𝑏 ∈ 𝐷. Since 𝑎 and 𝑏 are either in 𝑉(𝐻) or 

one of 𝑎 or 𝑏 coincide with the vertex 𝑣, there exists a path 

joining 𝑎 and 𝑏 in 〈𝐷〉𝑤 and hence 〈𝐷〉𝑤 is connected. Let 𝑤 ∈

𝑉(𝐻) ∖ 𝑆. Then | 𝑁𝐾1+𝐻  (𝑤) ∩ 𝑆| = 𝑘 for some integer 𝑘 ≥ 1. 

Thus, | 𝑁𝐾1+𝐻 (𝑤) ∩ 𝐷| = | 𝑁𝐾1+𝐻(𝑤) ∩ ({𝑣} ∪ 𝑆)| = 𝑘 + 1 for 

some integer 𝑘 ≥ 1. Hence, 𝐷 is a 𝑤𝑓𝑑-set in 𝐾1 + 𝐻. Lastly, 

suppose that 𝐷 ⊆ 𝑉(𝐻) is a |𝐷|𝑓𝑑-set in H. Then 𝐷 is a  |𝐷|𝑓𝑑-

set in 𝐾1 + 𝐻. Let 𝑐, 𝑑 ∈ 𝐷 ⊆ 𝑉(𝐻).  By the adjacency of the 

vertices in 𝐾1 + 𝐻, 𝑐𝑣, 𝑣𝑑 ∈ 𝐸(𝐾1 + 𝐻). Thus, [𝑐, 𝑣, 𝑑] is a 𝑐 −

𝑑 path in 〈𝐷〉𝑤. Hence, D is a 𝑤𝑓𝑑-set in 𝐾1 + 𝐻.  This 

completes the proof.  ∎ 

 

 The next two corollaries are direct consequences of 

Theorem 2.8. 

 

Corollary 2.9. Let 𝐾1 = 〈{𝑣}〉 and H be any nontrivial graph. 

Then  𝛾𝑤𝑓𝑑(𝐾1 + 𝐻) = 1. 

 

Proof: By Theorem 2.8,  𝛾𝑤𝑓𝑑 (𝐾1 + 𝐻) is the smallest among 

the values |{𝑣}|, where 𝑣 ∈ 𝑉(𝐾1) = 〈{𝑣}〉, 1 + 𝛾𝑓𝑑(𝐻) and 𝑘𝐻 

where 𝑘𝐻 = min{|𝐷|: 𝐷 𝑖𝑠 𝑎 |𝐷| 𝑓𝑑 − set in 𝐻}. As a 

consequence,  

𝛾𝑤𝑓𝑑(𝐾1 + 𝐻) = min{1, 1 + 𝛾𝑓𝑑(𝐻), 𝑘𝐻  } = 1.  ∎ 

 

Corollary 2.10. For positive integer 𝑛 ≥ 1, we have the 

following weakly connected fair domination numbers of 

complete graph 𝐾𝑛, star graph 𝐾1,𝑛 , fan graph 𝐹1,𝑛 , and wheel 

graph 𝑊1,𝑛. 

(i)  𝛾𝑤𝑓𝑑(𝐾𝑛) = 1, 𝑛 ≥ 1 

(ii) 𝛾𝑤𝑓𝑑(𝐾1,𝑛) = 1, 𝑛 ≥ 2 

      (iii) 𝛾𝑤𝑓𝑑(𝐹1,𝑛) = 1, 𝑛 ≥ 2 

      (iv)  𝛾𝑤𝑓𝑑(𝑊1,𝑛) = 1, 𝑛 ≥ 3 

 

A graph G is called bipartite if its vertex-set V(G) can 

be partitioned into two nonempty subsets 𝑉1 and 𝑉2 such that 

every edge of G has one end in 𝑉1 and one end in 𝑉2. The set 

𝑉1 and 𝑉2 are called partite sets of G. If each vertex in 𝑉1 is 

adjacent to every vertex in 𝑉2, then G is called complete 

bipartite graph. If |𝑉1| = 𝑚 and |𝑉2| = 𝑛, then the complete 

bipartite graph is denoted by 𝐾𝑚,𝑛.  The bi-star (𝐵(𝑟, 𝑠)) for 

𝑟, 𝑠 ≥ 2 is a graph obtained by joining the centers of the stars 

𝐾1,𝑟 and 𝐾1,𝑠. The barbell graph (𝐵𝑛,𝑛) is a graph obtained by 

connecting two complete graphs 𝐾𝑛 by a bridge. Figure 4 

shows the schematic diagrams of complete bipartite graph 

𝐾𝑚,𝑛, bi-star graph 𝐵(𝑟, 𝑠), and barbell graph 𝐵𝑛,𝑛. 

 
 The next result characterizes those graphs with 

weakly connected fair domination number exactly equal to 2. 

Theorem 2.11 Let 𝐺 be a connected graph of order 𝑛 ≥ 4 with 

𝛾(𝐺) ≠ 1. Then 𝛾𝑤𝑓𝑑(𝐺) = 2 if and only if there are distinct 

vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) such that (𝑁(𝑢) ∖ {𝑣}) ∪ (𝑁(𝑣) ∖ {𝑢}) =

𝑉(𝐺) ∖ {𝑢, 𝑣}  and either one of the following holds. 

(i) 𝑁(𝑢) ∩ 𝑁(𝑣) = 𝑉(𝐺) ∖ {𝑢, 𝑣} 

(ii) (𝑁(𝑢) ∖ {𝑣}) ∩ (𝑁(𝑣) ∖ {𝑢}) = ∅ and 𝑢𝑣 ∈
𝐸(𝐺).   

Proof: Suppose 𝛾𝑤𝑓𝑑(𝐺) = 2. Then 𝛾𝑤𝑓𝑑(𝐺) ≠ 1. Thus, 𝛾(𝐺) ≠

1 by Theorem 2.4. Let 𝐷 = {𝑢, 𝑣} be a 𝛾𝑤𝑓𝑑-set in G. Then 

(𝑁𝐺(𝑢) ∖ {𝑣}) ∪ (𝑁𝐺(𝑣) ∖ {𝑢}) = 𝑉(𝐺) ∖ 𝐷. Consider the 

following cases: 

Case 1. 𝐷 is a  |𝐷| 𝑓𝑑 − set of G. That is, D is a 2𝑤𝑓𝑑 − set of G. 

Then | 𝑁𝐺(𝑎) ∩ 𝐷| = |𝐷| = 2 for all 𝑎 ∈ 𝑉(𝐺) ∖ 𝐷, that 

is 𝑁𝐺(𝑎) ∩ 𝐷 = 𝐷 for all ∈ 𝑉(𝐺) ∖ 𝐷. This means that  𝑁𝐺(𝑢) ∩
𝑁𝐺(𝑣) = 𝑉(𝐺) ∖ 𝐷 = 𝑉(𝐺) ∖ {𝑢, 𝑣}. 

Case 2. 𝐷 is a 1𝑓𝑑 − set of G. That is D is 1 𝑤𝑓𝑑 − set of G. 

Then | 𝑁𝐺(𝑎) ∩ 𝐷| = 1 for all 𝑎 ∈ 𝑉(𝐺) ∖ 𝐷. It follows that 

 𝑁𝐺(𝑎) ∩ 𝐷 = {𝑢} or  𝑁𝐺(𝑎) ∩ 𝐷 = {𝑣}. Thus, ( 𝑁𝐺(𝑢) ∖ {𝑣}) ∩

( 𝑁𝐺(𝑣) ∖ {𝑢}) = ∅. Since 〈𝐷〉𝑤 is connected, 𝑢𝑣 ∈ 𝐸(𝐺). 

 Conversely, suppose that there exists 𝑢, 𝑣 ∈ 𝑉(𝐺),

𝑢 ≠ 𝑣 such that ( 𝑁𝐺(𝑢) ∖ {𝑣}) ∪ ( 𝑁𝐺(𝑣) ∖ {𝑢}) = 𝑉(𝐺) ∖

{𝑢, 𝑣}. Suppose first that  𝑁𝐺(𝑢) ∩  𝑁𝐺(𝑣) = 𝑉(𝐺) ∖

{𝑢, 𝑣}. Then 𝐷 = {𝑢, 𝑣} is a 2 𝑓𝑑 − set of G. Also, for every 𝑎 ∈

𝑉(𝐺) ∖ {𝑢, 𝑣} we have 𝑎𝑢, 𝑎𝑣 ∈ 𝐸(𝐺). Thus, 〈𝐷〉𝑤 is connected. 

Next, suppose that ( 𝑁𝐺(𝑢) ∖ {𝑣}) ∩ ( 𝑁𝐺(𝑣) ∖ {𝑢}) = ∅ and 

𝑢𝑣 ∈ 𝐸(𝐺). Then 𝐷 = {𝑢, 𝑣} is a 1 𝑓𝑑 − set of G. Clearly, 〈𝐷〉𝑤 

is connected. It follows that 𝐷 is a  𝑤𝑓𝑑 − set in 𝐺. Hence, 

𝛾𝑤𝑓𝑑(𝐺) ≤ |𝐷| =  2. Since 𝛾𝑤𝑓𝑑(𝐺) ≠ 1, it means that 

𝛾𝑤𝑓𝑑(𝐺) ≥ 2. Consequently, 𝛾𝑤𝑓𝑑 (𝐺) = 2.  ∎ 

 

 The next five results follow directly Theorem 2.11. 

The first three are presented without proofs. 

 

Corollary 2.12 Let G be any connected graph of order at least 

4 such that 𝛾(𝐻) ≠ 1. If 𝐺 = 𝐾2
̅̅ ̅ + 𝐻 , then 𝛾𝑤𝑓𝑑(𝐺 ) = 2.  

 

Corollary 2.13 Let G and H be any two graph such that 𝛾(𝐺) ≠

1 and 𝛾(𝐻) ≠ 1. Then 𝛾𝑤𝑓𝑑(𝐺 + 𝐹 ) = 2, where 𝐹 = 𝐾2
̅̅ ̅ + 𝐻. 

 

Corollary 2.14 Let 𝐵𝑛,𝑛 be a barbell graph with 𝑛 ≥ 3. Then 

𝛾𝑤𝑓𝑑(𝐵𝑛,𝑛  ) = 2. 

 

Corollary 2.15 Let 𝐾𝑚,𝑛 be a complete bipartite graph with 

𝑚, 𝑛 ≥ 2. Then 𝛾𝑤𝑓𝑑(𝐾𝑚,𝑛 ) = 2 
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Proof: Let A and B be the two partite sets of 𝐾𝑚,𝑛. Let 𝐷 ⊆

𝑉(𝐾𝑚,𝑛) be such that |𝐷 ∩ 𝐴| = 1 and |𝐷 ∩ 𝐵| = 1. Then |𝐷| =

2.  Let 𝑥 ∈ 𝑉(𝐾𝑚,𝑛) ∖ 𝐷. Then 𝑥 ∈ 𝐴 ∖ (𝐷 ∩ 𝐴)  or 𝑥 ∈ 𝐵 ∖

(𝐷 ∩ 𝐵). Suppose 𝑥 ∈ 𝐴 ∖ (𝐷 ∩ 𝐴).  This implies that |(𝐷 ∩

𝐵) ∩ 𝑁𝐾𝑚,𝑛
(𝑥)| = 1. Thus, |𝐷 ∩ 𝑁𝐾𝑚,𝑛

(𝑥)| = 1, Similarly, if  𝑥 ∈

𝐵 ∖ (𝐷 ∩ 𝐵) then |(𝐷 ∩ 𝐴) ∩ 𝑁𝐾𝑚,𝑛
(𝑥)| = 1. Thus, |𝐷 ∩

𝑁𝐾𝑚,𝑛
(𝑥)| = 1. Hence D is 1FD set in 𝐾𝑚,𝑛. Since 𝐾𝑚,𝑛 ≅ 𝐾𝑚

̅̅ ̅̅  ∨

𝐾𝑛
̅̅̅̅   and 𝐷 = (𝐷 ∩ 𝐴) ∪ (𝐷 ∩ 𝐵) ⊆ 𝑉(𝐾𝑚

̅̅ ̅̅  ∨ 𝐾𝑛
̅̅̅̅ ),   by Remark 

1.1, 〈D〉𝑤 is connected. This means that D is 𝑤𝑓𝑑-set in 𝐾𝑚,𝑛. 

Therefore, 𝛾𝑤𝑓𝑑(𝐾𝑚,𝑛) ≤ |𝐷| = 2. Next, let 𝐷∗ be a 𝛾𝑤𝑓𝑑-set in 

𝐾𝑚,𝑛. Suppose |𝐷∗| = 1, take 𝐷∗ = {𝑥}. Let  

𝑥 ∈ 𝐷∗ ∩ 𝐴. Since 𝑚 ≥ 2, there exist 𝑦 ∈ 𝐴 ∖ 𝐷 such that 𝑥𝑦 ∉

𝐸(𝐾𝑚,𝑛). This a contradiction to the assumption that 𝐷∗ is 

dominating set in 𝐾𝑚,𝑛. Thus, 𝛾𝑤𝑓𝑑(𝐾𝑚,𝑛) = |𝐷∗| ≥ 2. 

Therefore, 𝛾𝑤𝑓𝑑(𝐾𝑚,𝑛) = 2. ∎ 

 

Corollary 2.16 Let 𝐵(𝑟, 𝑠) be a bi-star graph with 𝑟, 𝑠 ≥ 2. 

Then 𝛾𝑤𝑓𝑑(𝐵(𝑟, 𝑠)  ) = 2. 

Proof: Let 𝑥, 𝑦 be the central vertices of 𝐾1,𝑟 and 𝐾1,𝑠, 

respectively. Then (𝑁𝐵(𝑟,𝑠)(𝑥) − {𝑦}) ∪ (𝑁𝐵(𝑟,𝑠)(𝑦) ∖ {𝑥} =

𝑉(𝐵(𝑟, 𝑠)) ∖ {𝑥, 𝑦} with (𝑁𝐵(𝑟,𝑠)(𝑥) ∖ {𝑦}) ∩ (𝑁𝐵(𝑟,𝑠)(𝑦) ∖ {𝑥} =

∅ and 𝑥𝑦 ∈ 𝐸(𝐵(𝑟, 𝑠)). Moreover, it can be observed that 

𝛾(𝐵(𝑟, 𝑠)) ≠ 1. By Theorem 2.11, 𝛾𝑤𝑓𝑑(𝐵(𝑟, 𝑠)  ) = 2. ∎ 

 

Let G and H be two graphs on disjoint sets of 𝑛1 and 

𝑛2 vertices,  𝑚1 and 𝑚2 edges, respectively. The vertex corona 

of two graphs G and H is the graph 𝐺 ∘ 𝐻 obtained by taking 

one copy of G and 𝑛1  copies of H, and then joining the 𝑖th 

vertex of G to every vertex of the 𝑖th copy of H. For every 

vertex 𝑣 ∈ 𝑉(𝐺), denoted by 𝐻𝑣 the copy of H whose vertices 

are attached one by one to the vertex 𝑉. The subgraph of 𝐺 ∘

𝐻 corresponding to the join 〈{𝑣} + 𝐻〉 is denoted by 𝑣 + 𝐻. 

The edge corona of G and H is the graph 𝐺 ⋄ 𝐻 obtained by 

taking one copy of G and 𝑚1 copies of H and then joining the 

two end-vertices of the 𝑖th edge of G to every vertex in the 

𝑖th copy of H. If 𝑎𝑏 ∈ 𝐸(𝐺), then the copy H whose vertices 

are connected one by one to both 𝑎 and 𝑏 in  𝐺 ⋄ 𝐻 is called 

the 𝑎𝑏-copy of H and is denoted by 𝐻𝑎𝑏. If 𝑉(𝐻) =

{𝑣1, 𝑣2, … , 𝑣𝑛 }, then the vertices of 𝐻𝑎𝑏 may be denoted by 

𝑣1
𝑎𝑏 , 𝑣2

𝑎𝑏 , … , 𝑣𝑛
𝑎𝑏  . 

 
  

 Theorem 2.17 provides characterization of the 𝑤𝑓𝑑-

set in the vertex corona of graphs. 

 

Theorem 2.17. Let G be a connected graph and H be any 

graph. Then 𝐷 ⊆ 𝑉(𝐺 ∘ 𝐻 ) is a  𝑤𝑓𝑑-set in 𝐺 ∘ 𝐻 if and only 

if one of the following holds: 

(i)     𝐷 = 𝑉(𝐺) 

(ii)   𝐷 = 𝑉(𝐺) ∪ (⋃ 𝑆𝑣
𝑣∈𝑉(𝐺) )  , where 𝑆𝑣 is a (𝑘 − 1)𝑓𝑑-

set of 𝐻𝑣 for some positive integer 𝑘 ≥ 2. 

 

Proof: Let 𝐷  be a 𝑘𝑤𝑓𝑑-set of 𝐺 ∘ 𝐻. Let 𝐷 = 𝑋 ∪ 𝑌, where 

𝑋 ⊆ 𝑉(𝐺) and 𝑌 ⊆ ⋃ 𝑉(𝐻𝑣)𝑣∈𝑉(𝐺) . We consider the following 

cases: 

Case 1. 𝑌 = ∅. Then 𝐷 = 𝑋. Since D is a weakly connected 

dominating set and fair dominating set in 𝐺 ∘ 𝐻, it follows 

that 𝐷 = 𝑉(𝐺). 

Case 2. 𝑌 ≠ ∅. Clearly, 𝑋 ≠ ∅ since D must be a weakly 

connected dominating set in 𝐺 ∘ 𝐻. So, 𝑋 = 𝐷 ∩ 𝑉(𝐺). Let 𝑣 ∈

𝑋. Suppose there exists 𝑢 ∈ 𝑁𝐺(𝑣) ∖ 𝑋 and let 𝐷𝑢 = 𝑉(𝐻𝑢) ∩

𝐷. Since 𝑢 ∉ 𝑋 and D is a 𝑘𝑤𝑓𝑑-set, it follows that 𝐷𝑢 is a 𝑘𝑓𝑑-

set in 𝐻𝑢. This means that |𝑁𝐺∘𝐻(𝑢) ∩ 𝐷| = |𝑁𝐺(𝑢) ∩ 𝑋| +

|𝐷𝑢| ≥ 1 + |𝐷𝑢| > 𝑘. This is contrary to the assumption that D 

is a 𝑘𝑓𝑑-set. Thus, 𝑢 ∈ 𝑋 for every 𝑢 ∈ 𝑁𝐺(𝑣). Thus, 𝑉(𝐺) ⊆ 𝐷 

since G is connected. Hence, 𝑋 = 𝑉(𝐺) and so 𝐷 = 𝑉(𝐺) ∪ 𝑌. 

If 𝐷𝑣 = 𝑉(𝐻𝑣) for all 𝑣 ∈ 𝑉(𝐺), take 𝑘 ≥ 2. On the other hand, 

suppose 𝐷𝑣 ≠ 𝑉(𝐻𝑣) for some 𝑣, then take 𝑘 ≥ 2. Let 𝑥 ∈ 𝑌 

such that 𝑥 ∈ 𝑉(𝐻𝑣) for some 𝑣 ∈ 𝑉(𝐺). Let 𝐷𝑣 = 𝑉(𝐻𝑣) ∩ 𝐷. 

Then 𝑥 ∈ 𝐷𝑣. Since 𝑣 ∈ 𝐷 and D is a 𝑘𝑤𝑓𝑑-set, it follows that 

𝐷𝑣 is a (𝑘 − 1)𝑓𝑑-set in 𝐻𝑣. Therefore, 𝑌 = ⋃ 𝐷𝑣𝑣∈𝑉(𝐺) , where 

each  𝐷𝑣 is a (𝑘 − 1)𝑓𝑑-set in 𝐻𝑣. 

 Conversely, suppose first that 𝐷 = 𝑉(𝐺). Then for 

𝑎, 𝑏 ∈ ⋃ 𝑉(𝐻𝑣)𝑣∈𝑉(𝐺) , we have |𝑁𝐺∘𝐻(𝑎) ∩ 𝐷| = |{𝑣}| = 1 =

|𝑁𝐺∘𝐻(𝑏) ∩ 𝐷|. Thus, D is a 1𝑓𝑑-set of 𝐺 ∘ 𝐻. Now, if (b) holds, 

then for any 𝑐, 𝑑 ∈ ⋃ 𝑉(𝐻𝑣) ∖ 𝐷𝑣∈𝑉(𝐺) , |𝑁𝐺∘𝐻(𝑐) ∩ 𝐷| = (𝑘 −

1) + 1 = 𝑘 = |𝑁𝐺∘𝐻(𝑑) ∩ 𝐷|. It follows that D is a 𝑘𝑓𝑑-set of 

𝐺 ∘ 𝐻. Since 𝑉(𝐺) ⊆ 𝐷, in both cases, 〈𝐷〉𝑤 is connected. 

Therefore, D is a 𝑘𝑤𝑓𝑑-set in 𝐺 ∘ 𝐻. ∎ 

 

Corollary 2.18. Let G be a connected graph and let H be any 

graph. Then 𝛾𝑤𝑓𝑑(𝐺 ∘ 𝐻 ) = |𝑉(𝐺)|. 

 

Proof: By Theorem 2.17, 𝛾𝑤𝑓𝑑(𝐺 ∘ 𝐻 ) is the minimum among 

the values |𝑉(𝐺)| and |𝑉(𝐺)| + 𝑀, where 𝑀 = ∑ |𝑆𝑣|𝑣∈𝑉(𝐺)  and 

𝑆𝑣 is a (𝑘 − 1)𝑓𝑑-set of 𝐻𝑣 for some integer 𝑘 > 1. As a 

consequence, 𝛾𝑤𝑓𝑑(𝐺 ∘ 𝐻 ) = |𝑉(𝐺)|. ∎ 

 

 We now examine the edge corona of two graphs G 

and H. 

 

Theorem 2.19. Let G be any connected graph of order  𝑛 ≥ 2,  

size 𝑚 ≥ 1, and H be any graph. Then 𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) = 1 if and 

only if every edge in G is incident to a commom vertex in G. 

 

Proof: Suppose first that 𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) = 1. Let 𝐷 = {𝑣} be a 

𝛾𝑤𝑓𝑑-set in 𝐺 ⋄ 𝐻. Suppose that there exists an edge, say ab ∈

𝐸(𝐺) with 𝑎𝑏 not incident to vertex  𝑣 ∈ 𝑉(𝐺). Since |𝑉(𝐻)| ≥
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1, there exists a vertex 𝑥 ∈ 𝑉(𝐻𝑎𝑏) such that 𝑣𝑥 ∉ 𝐸(𝐺 ⋄ 𝐻). It 

means that 𝑥 is not dominated by D in 𝐺 ⋄ 𝐻. This contradicts 

to the assumption that D is dominating set in 𝐺 ⋄ 𝐻. 

 Conversely, suppose that every edge in G is incident 

to a vertex 𝑣∗ ∈ 𝑉(𝐺). Let 𝐷∗ = {𝑣∗}. Then 𝐷∗ is a dominating 

set in G. Since 𝑣∗ is incident to every edge in G, it follows that 

every vertex 𝑥∗ ∈ 𝑉(𝐻𝑣∗𝑧) is also adjacent to 𝑣∗ with 𝑧 ∈ 𝑉(𝐺). 

Thus, 𝐷∗ is a dominating set in  

𝐺 ⋄ 𝐻. Next, since |𝐷∗| = 1, every edge in G is incident to  𝑣∗ ∈

𝐷∗, clearly 〈𝐷∗ 〉𝑤 is connected. In fact, 〈𝐷∗ 〉𝑤 ≅ 𝐾1,𝑟, where 

𝑟 = 𝑛 − 1 + 𝑚|𝑉(𝐻)|. Now, let 𝑢, 𝑤 ∈ 𝑉(𝐺 ⋄ 𝐻) ∖ 𝐷∗. Then 𝑢 ≠

𝑣∗ and 𝑤 ≠ 𝑣∗. Thus, |𝑁𝐺⋄𝐻(𝑢) ∩ 𝐷∗| = 1 = 1|𝑁𝐺⋄𝐻(𝑤) ∩ 𝐷∗|. 

Hence, 𝐷∗ is a 1𝑓𝑑-set in 𝐺 ⋄ 𝐻. Therefore, 𝐷∗ is a 𝑤𝑓𝑑-set in 

𝐺 ⋄ 𝐻. As a consequence, 𝛾𝑤𝑓𝑑 (𝐺 ⋄ 𝐻 ) ≤ |𝐷∗| = 1. By Remark 

2.1, 𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) ≥ 1. Consequently, 𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) = 1. This 

completes the proof. ∎ 

  

The following corollaries are direct consequences of 

Theorem 2.19. 

 

Corollary 2.20 If G is a nontrivial connected graph and H is 

any graph with 𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) = 1, then 𝛾(𝐺) = 1. 

 

Corollary 2.21 Let H be any graph. If G is a star graph, then 

𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) = 1. 

 

  The next result provides sufficient conditions for the 

𝑤𝑓𝑑-set in the edge corona 𝐺 ⋄ 𝐻 

 

Theorem 2.22 Let G be any connected graph of order 𝑛 ≥ 4 

and H be any graph. Then 𝐷 ⊆ 𝑉(𝐺 ⋄ 𝐻) is a 𝑤𝑓𝑑-set in 𝐺 ⋄ 𝐻 

if one of the following holds: 

(i)   𝐷 = 𝑉(𝐺) 

(ii)  𝐷 = 𝑉(𝐺) ∪ 𝑆, where 𝑆 = ⋃ 𝑆𝑎𝑏
𝑎,𝑏∈𝑉(𝐺)

𝑎𝑏∈𝐸(𝐺)

 and 𝑆𝑎𝑏 is a 

(𝑘 − 2)𝑓𝑑-set in 𝐻𝑎𝑏 for some 𝑘 ≥ 3, 𝑘 ∈ ℕ. 

 

Proof: Suppose (i) holds. Then for 𝑥, 𝑦 ∈

⋃ 𝑉(𝐻𝑎𝑏)𝑎𝑏∈𝐸(𝐺) , |𝑁𝐺⋄𝐻(𝑥) ∩ 𝐷| = |{𝑎, 𝑏}| = 2 = |𝑁𝐺⋄𝐻(𝑦) ∩

𝐷|. Thus, D is a 2𝑤𝑓𝑑-set in 𝐺 ⋄ 𝐻. Next, suppose (ii) holds. 

Then 

|𝑁𝐺⋄𝐻(𝑥′) ∩ 𝐷| = (𝑘 − 2) + |{𝑎, 𝑏}| 
                                                 = (𝑘 − 2) + 2 

                                                  = |𝑁𝐺⋄𝐻(𝑦′) ∩ 𝐷| 

for any 𝑥′𝑦′ ∈ 𝑉(𝐻𝑎𝑏) ∖ 𝐷. Thus, D is a 𝑘𝑓𝑑-set in 𝐺 ⋄ 𝐻. Since 

𝑉(𝐺) ⊆ 𝐷 and G is connected, 〈𝐷〉𝑤 is connected in both 

cases. Therefore, D is a 𝑘𝑤𝑓𝑑-set in 𝐺 ⋄ 𝐻. ∎ 

 

Corollary 2.23 Let G be any graph of order 𝑛 ≥ 4 and H be 

any graph. Then 𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) ≤ 𝑛. 

 

Proof: By Theorem 2.22, 𝛾𝑤𝑓𝑑 (𝐺 ⋄ 𝐻 ) is at most the minimum 

between |𝑉(𝐺)|  and |𝑉(𝐺)| + |𝐸(𝐺)||𝑆𝑎𝑏|, where 𝑆𝑎𝑏 is a 

(𝑘 − 2)𝑓𝑑-set in 𝐻𝑎𝑏 for every 𝑎𝑏 ∈ 𝐸(𝐺) and some 𝑘 ≥ 3, 𝑘 ∈

ℕ. That is, 𝛾𝑤𝑓𝑑(𝐺 ⋄ 𝐻 ) ≤ min{|𝑉(𝐺)|, |𝑉(𝐺)| + |𝐸(𝐺)||𝑆𝑎𝑏|} =

|𝑉(𝐺)|. ∎ 

 

CONCLUSION AND RECOMMENDATION 

 

For any connected graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)), a dominating set 

𝐷 ⊆ 𝑉(𝐺) is a weakly connected 𝑘 -fair dominating set in G, 

abbreviated 𝑘wfd – set, if the subgraph 〈D〉𝑤 = (𝑁𝐺[𝐷], 𝐸𝑤) is 

connected, where 𝐸𝑤 is the set of all edges in G with at least 

one vertex in D and |𝑁𝐺(𝑢) ∩ 𝐷| = 𝑘 for every 𝑢 ∈ 𝑉(𝐺) ∖ 𝐷 

for some integer 𝑘 ≥ 1. This article focused on the weakly 

connected 𝑘-fair domination of some special graphs, join, 

vertex and edge coronas of graphs.  For future research, it 

would be interesting to investigate the parameter for some 

other binary operations on graphs such as cartesian 

products, lexicographic products, and obtained Nordhaus- 

Gaddum-type results. 
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